Search results for "Moser–Trudinger inequality"
showing 1 items of 1 documents
Gradient Estimate for Solutions to Poisson Equations in Metric Measure Spaces
2011
Let $(X,d)$ be a complete, pathwise connected metric measure space with locally Ahlfors $Q$-regular measure $\mu$, where $Q>1$. Suppose that $(X,d,\mu)$ supports a (local) $(1,2)$-Poincar\'e inequality and a suitable curvature lower bound. For the Poisson equation $\Delta u=f$ on $(X,d,\mu)$, Moser-Trudinger and Sobolev inequalities are established for the gradient of $u$. The local H\"older continuity with optimal exponent of solutions is obtained.